
e-monotone
A pcl-cvs like interface to monotone

Willem Rein Oudshoorn

An emacs front end for monotone, largely inspired on pcl-cvs. This document describes
version 0.4
Copyright c© 2005 W. R. Oudshoorn

i

Table of Contents

1 Introduction . 1

2 Installation . 2
2.1 Compatibility . 2
2.2 Configuration . 2

3 Using e-monotone . 3
3.1 The main window . 3

3.1.1 Filtering . 4
3.1.2 Examining files . 4
3.1.3 Reverting . 4
3.1.4 Adding/Dropping . 4

3.2 Committing . 5

4 Advanced Uses . 6
4.1 Marking . 6
4.2 Diffing revisions . 6
4.3 Revision graphs . 6
4.4 Configuration . 7
4.5 Types of revision graphs . 7

4.5.1 Reduced display . 7
4.5.2 Branch crossings . 7
4.5.3 Incoming branches . 7
4.5.4 Major branch crossings . 7
4.5.5 Annotate display . 8

5 BUGS . 9

6 TODO . 10

Index . 11

Chapter 1: Introduction 1

1 Introduction

This package is a simple emacs interface to monotone. In its use it is somewhat similar to
the pcl-cvs front end for CVS. However pcl-cvs is a mature package and this one is not, so
expect a lot of rough edges, bugs and not a lot of advanced features.

For people who do not know pcl-cvs, this mode will allow you to manage an existing
monotone project. It will
• Show a listing of all the files in the project, including their state.
• Allow you to show a diff of an edited file against the repository
• Allow you to commit the whole tree and specify a commit message.
• Allow to undo file changes, revert the file to version in the monotone database
• Add and Drop files.

What it will not do yet, but is desirable for the future
• Branching, allow to switch to a different branch.
• Synchronization, synchronize your changes with another database
• Merging

What I do not envision this mode to do is
• Create a new project
• Checkout a new project
• etcetera

Although, it might be added a la gnus’s server configuration.

Chapter 2: Installation 2

2 Installation

Installation is pretty straightforward, copy the elisp files, ‘e-monotone.el’,
‘e-monotone-a.el’, ‘e-monotone-wami.el’, ‘e-monotone-certs.el’ and
‘e-monotone-graphs.el’ to a location in the emacs load path, and put the
following in your ‘.emacs’ file

(load "e-monotone.el")

If emacs complains during startup that it can not fine ‘e-monotone-a.el’ or any other
e-monotone file, the files are not installed the emacs load path. The load path can be
changed with

(add-to-list ’load-path (expand-file-name "/path/to/e-monotone"))

2.1 Compatibility

At the moment it is only tested with monotone version 0.23. It uses only a few monotone
commands, but these includes automate inventory and automate heads. So if the output
format is changed it probably will not work. Also for performance reasons, it will use
db execute to get all the certificates. This does not work with version 0.26 because the
database has changed. Most things will still work, but most noticably, the graph drawing
is not as nice with version 0.26.

2.2 Configuration

Emacs need to be able to find the monotone executable. Default it tries to find an executable
with the name monotone or mtn in the PATH. If this does not work you can tell emacs which
executables to use by putting

(setq monotone-configuration ’(("MT" "/path/and/monotone-executable-pre-0.26-name" t)
("_MTN" "/path/and/monotone-executable-0.26-or-higher" nil)))

in your ‘.emacs’ file. If you are on windows, you can use dos style paths but don’t forgot
to quote the slash. So a path should look like f:\\path\\monotone.exe".

Similar for viewing the graphs in emacs you might want to set the path to the dot
executable. If dot is not found add

(setq dot-cmd "/path/and/dot-executable-name")

The dot program is part of graphviz and is used to convert graphs pictures. The dot
program needs to be able to convert to ‘.png’ files.

Chapter 3: Using e-monotone 3

3 Using e-monotone

3.1 The main window

The first thing to do is to have a monotone project. Now lets assume this project lives in the
directory ‘~/src/em’. Now to start the e-monotone you use the command M-x monotone-

examine. This will prompt for a directory in the usual emacs way. So just supply the
directory above, ‘~/src/em’ and you end up with a screen that roughly looks like:� �
directory ~/src/em
revision 3f70e5cd7cee3b080767aa447354dcb16bcff2ef
heads 3f70e5cd7cee3b080767aa447354dcb16bcff2ef

branch "nl.xs4all.ironhead.emacs-monotone"
database "/home/woudshoo/monotone/configuration.db"

key ""

Working copy based on head, and there are pending changes

edited: 0 added: 1 unknown: 16
renamed-and-edited: 0 added-and-missing: 0 ignored: 3
renamed: 0 dropped: 0
unchanged: 2 missing: 0 TOTAL: 22

Currently displaying (added added-and-missing dropped edited renamed missing)

added e-monotone.texi
 	
Now there a few sections in in the screen, the first two lines indicate on which revision

our current source is based, and what the monotone-database thinks the most up to date
revisions are. In this case, they are equal, so we are working on the head revision. This
information is also displayed in the 8-th line, which is the summary line. The summary line
displays the most important information, in the example it is

Working copy based on head, and there are pending changes

and here we can see that we are based on head, so committing will not create an addi-
tional head and there are local changes.

Just above the summary line we have some general information, the branch we work on,
the database that is used and the default key that is used. Actually it is just the content
of the ‘MT/options’ file.

Below the summary line we display some statistics of the project. Here we see that the
project contains 22 files, of which 19 are not under version control (the unknown and the
ignored files) one is newly added, and 2 are already under version control but not changed.

Below the statistics section we see the file listing. In this example it shows only one file,
the newly added ‘e-monotone.texi’ file. It shows only one file, because the file listing is

Chapter 3: Using e-monotone 4

filtered. At the moment it shows only interesting files. The buffer explains which files are
displayed by the line:

Currently displaying (added added-and-missing dropped edited renamed missing)

So it does display the added file, but not the 16 unknown and not the 3 ignored files.

3.1.1 Filtering

As seen in this example, the list of files is filtered. When M-x monotone-examine is invoked
it starts with displaying only the interesting files. The interesting files are files which ac-
cording to monotone have one of the following states added, dropped, renamed, edited,
missing, added-and-missing. This is done to avoid cluttering the buffer all the uninter-
esting files. However it is very easy to change the filtering. If you want to see all files just
press the key a for all and you will see all files listed, in this case 22. Pressing i will bring
you back to the list of interesting files. There is one other predefined filter, accessed by k,
the known file list. This displays all files that are under version control.

It is also possible to show/hide per category.

sa Toggles the display of the added files

sd Toggle the display of dropped files

si Toggles the display of ignored files

sm Toggle the display of missing files

se Toggle the display of edited files

su Toggle the display of unchanged files

sr Toggle the display of renamed files

s? Toggle the display of unknown files

3.1.2 Examining files

When the cursor is positioned on file line the 〈RET〉 will open this file in a new buffer. If the
file was edited you can use the = key to open a buffer containing the difference between the
current content and the content of the file as it was when this version was checked out.

3.1.3 Reverting

After you have carefully considered the output of = and decide that you do not want this
change, for example because you have only added temporary debugging statement, you can
use U in the monotone buffer, with the cursor on the line of the file, to revert this file back
to the original state.

3.1.4 Adding/Dropping

In the monotone buffer the keys A and D can be used to add respectively drop files from
monotone.

Chapter 3: Using e-monotone 5

3.2 Committing

Finally we want to commit. By pressing C a buffer is opened that contains a description of
all the changes that are being committing. All the lines in this buffer start with MT:. Just
before the actual commit takes place all the lines starting with MT: are removed and the
text that is left is used as the commit message. The user initiates the commit by pressing
C-c C-c in the commit buffer. So normally you press C in the monotone buffer, add some
lines in the commit buffer and finish it off with C-c C-c. If at any time you want to remove
the comment lines, you can do that by C-c C-r. If you do not want to see these lines at all
you should start by using c instead of C. Using the lowercase version is equivalent with the
capital version except that the commit buffer starts out empty.

Chapter 4: Advanced Uses 6

4 Advanced Uses

4.1 Marking

In the monotone buffer you can mark files by pressing m and unmark them with u. Af-
ter marking the commands that normally work on a single file will work on the marked
collection. This allows you to Add, Delete, Revert or Commit only a selected number of
files.

Note that marking and displaying are independent. So it is possible to have a lot of
marked files and not see them flagged in the monotone buffer. Fortunately e-monotone will
ask for confirmation when operating on the marked files.

The key M-u will unmark all marked files.

4.2 Diffing revisions

Pressing = on the revision ids in the top of the buffer will present a diff between that revision
and your working copy.

Presssing t in the monotone buffer on a line containing a file will show the annotated
version.

The annotated file is by default displayed with on the left hand side a shortened revision
hash and on the right hand side the content of the file.

The display can be changed in several ways,

ss Shows the shortened revision hashes, this is the default.

sf Show the full length revision hash.

sa Show the value of the author certificate

sd Show the value of the date certificate

Furthermore, the way the lines are coloured can be changed, the default is to more or
less assign a random colour to a revision. By key sequence cd will colour the revisions by
date. Pressing cr will revert to the random colouring of revisions.

In the monotone and annotate buffer pressing W show a revision graph rendered by dot.

4.3 Revision graphs

A monotone database typically holds hundredths or thousands of revisions, so a displaying
a complete revision graph is a bit useless. The graph needs to be reduced to a managable
size.

A simple way of reducing the graph is to pick an interesting node, like the current
revision, and only show a small neighborhood of this node.

This is of course not the only way to reduce a graph, but to keep it managable in
monotone all graphs displayed are limited by the number of nodes displayed. The numebr
of nodes that is displayed is increased by the + key and reduced by the -. Because the
image displayed has a fixed size this will result in some kind of zooming effect.

Chapter 4: Advanced Uses 7

4.4 Configuration

There are two important variables that you can configure for the displaying of the revision
graphs,

monotone-preffered-branches
This variable contains a list of regular expressions. These expressions are used
when a revision has multiple branch certificates. If a revision has multiple
branch certificates and one of branch names matches one of the regular ex-
pressions in the preffered-branches variables it will assume the matched branch
name for coloring.

monotone-wami-node-displayed-certs
This variable determines which certificates are displayed in the diagrams. It is
a list of certificate names to display. A list element is either a string, in which
case the value is displayed as such, or a cons pair. The first element of the
cons pair is a certifacte name and the second element a functions which takes
as argument the branch value and returns the string to display instead.

4.5 Types of revision graphs

Beside just taking a number of neighbouring nodes e-monotone has the ability to modify
the displayed graph in interesting ways.

4.5.1 Reduced display

A basic reduction step is to remove all nodes that have exactly one parent and exactly one
child. Removing these nodes will leave the topology of the graph intact and allow you to
display more of the neighbourhood of the interesting node than otherwise would be the
case. The displayed graph will display the edge that previously contained the node blue, so
you have an indication that some revisions are ommited along the blue arc.

4.5.2 Branch crossings

This reduction steps try to display the interaction between branches by mostly ignoring
what happens inside a branch. The reduction tries to remove as many nodes as possible,
only keeping those who either have a parent in a different branch or a child in a different
branch. Also in order to keep an overview, head nodes and root nodes are not deleted.

4.5.3 Incoming branches

This concentrates on what is merged in from other branches in the current branch. Here
current branch is determined by which branch the intereseting revision belongs to. The
nodes that are kept are the nodes in the current branch who have a parent in a different
branch. Also nodes in a branch different from the current branch who have a child in the
current branch are kept. As usual the heads and root node of the current branch are not
discarded.

4.5.4 Major branch crossings

This needs to be documented and made configurable.

Chapter 4: Advanced Uses 8

4.5.5 Annotate display

If the graph is generated from the annotate buffer the graph displayed will display the
current revision plus all revisions that are mentioned in the annotate buffer.

Chapter 5: BUGS 9

5 BUGS

There a plenty bugs I know of,
• Cursor position is not well maintained when buffer is redisplayed
• Lots of file states are not handled correctly, for example renaming
• Font lock coloring of the commit buffer is wrong
• After add/drop/revert the file status displayed may be incorrect. Work around, regen-

erate with g

• Many many more

Chapter 6: TODO 10

6 TODO

A lot :-)

Index 11

Index

(Index is nonexistent)

	Introduction
	Installation
	Compatibility
	Configuration

	Using e-monotone
	The main window
	Filtering
	Examining files
	Reverting
	Adding/Dropping

	Committing

	Advanced Uses
	Marking
	Diffing revisions
	Revision graphs
	Configuration
	Types of revision graphs
	Reduced display
	Branch crossings
	Incoming branches
	Major branch crossings
	Annotate display

	BUGS
	TODO
	Index

